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Abstract. The usual criterion for the observation of the Shubnikov-de Haas effect is that 
mer * 1 where me is the cyclotron frequency. The mean free time between collisions, I ,  is 
normally obtained from the conductivity o = n$r/m*. We have ohserved Shubnikov-de 
Haas peaks in InP close to the metal-insulator transition for which 0.1 = 0.1, It is clear 
therefore that the mean free lime derived from conductivity measurements is not the same 
as the time the electron spends in a cyclotron orbit before scattering occurs. 

From measurements of the diffusion constant D and the inelastic scattering time zi we 
deduce an inelasticlength Li = ( D c ~ ) ' ~ .  Weshow that. in the relevant region, the magnetic 
length LH = (h/Be)'D becomes smaller than Li and also smaller than d ,  the average distance 
between impurities. When this occurs the mean free lime c becomes field dependent and an 
increased proponion of electrons n, are then able to perform complete cyclotron orbits 
without collisions, thus contributing to lhe Shubnikov-de Haas effect. While performing a 
cylotronorbiltheseelectmnsarenotcontributingto thecurrent.The measured conductivity 
may then be considered to be due to a smaller number of electrons n - n,. Hence the 
value of r derived from the simple relation a = ne%/" is no longer appropriate for the 
Shubnikov-de Haas criterion. 

1. Shubnikov-de Haas criteria 

Standard textbook discussions of Shubnikov-de Haas oscillations emphasize that, for 
the effect to be observed, the condition w,z P 1 must be satisfied (0, = Be/m* is the 
cyclotron frequency; 5,  the mean free time between collisions, can be obtained from the 
measured conductivity U = ne%,"*, n being theelectron density). However, a number 
of publicationsreporting theconductivity just on themetallicside of the transition report 
a Shubnikov-de Haas oscillation where this criterion is far from being satisfied. 

We report, below, a Shubnikov-de Haas peak where w,r is as low as 0.1. We discuss 
possible reasons for which, for acombination of high magnetic field and low temperature, 
such observations are possible. 

2. Experimental measurements 

Two samples were measured with electron concentrations derived from low-tem- 
perature Hall measurements: (1) 5.3 x 102?m-3 and (2) 3.3 x 1022m-3. The critical 
concentration n, derived from n:13aH = 0.26 is 3.4 x lo2? ~ n - ~ .  Sample 2 was thus just 
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on the insulating side of the transition in zero magnetic field. The samples were epitaxial 
layers of clover-leaf shape and were measured in a van der Pauw configuration using an 
AC potentiometric conductance bridge operating at 27.5 Hz. 

The conductivity of sample 1 was measured at a number of temperatures down to 
45 mK, each point being measured at steady temperature and field. A fairly sharp 
minimumin conductivity wasobtained at about 3.16T. If we assume that thisminimum 
in conductivity occurs at a field where the n = 1 Landau level coincides with the Fermi 
surface, we obtain n = 5.8 x lou 

A further oscillation corresponding to the next Landau level can be observed but is 
not well resolved. To improve the resolution the magnetic field was swept at a suitable 
rate and the signal double differentiated. Two clearly defined peaks were now obtained. 
This procedure was repeated at six different temperatures between 4 K and 60 mK 
and the results averaged. A scatter of less than 3% was obtained with no apparent 
temperature dependence in peak position as is to be expected for Shubnikov-de Haas 
oscillations. The standard formula K: = 2e/fiA(l/B) gave an electron density of 
5.6 x m-3. This compares with 5.8 X lon m-3 derived from equating the point-by- 
point extremum to ISw, and with 5.3 X lon m-; from low-temperature Hall measure- 
ments. Calculating r from the conductivity at 1.9 T appropriate for the n = 2 Landau 
level. we find W,T = 0.24 which is of course far below the requirement w,a P 1. 

We turn now to sample 2 whose behaviour has been proposed (Finlayson et all987) 
as an example of the Shapiro (1984) phase diagram in that, starting as an Anderson 
insulator in zero field, it becomes metallic in low magnetic fields and a magnetic insulator 
in high fields. In the following section we report measurements thnt help to confirm the 
Shapiro double transition. 

3. Conductivity versus 7‘”’ 

Altshuler and Aronov (1983) have shown that, at fields greater than that required for 
thespin-splittingconditiongp,B = nkTandclose to the transition. theconductivity will 
be given by a = a + bT1I3. Maliepaard et af (1988) further showed that the dominant 
length scale did not change on going through the transition, so U = a + bTli3 still applied 
but a became a negative quantity. 

With this in mind we have measured the conductivity of sample 2 as a function of 
magnetic field and temperature in the neighbourhood of the transition. The results are 
shown in figure 1 where the conductivity is plotted against T‘13. Reasonably good 
straight-line plots are obtained in the region where gp,B > nkT. A computer fit to a = 
a + bT1I3 gave negative values for a, so for fields greater than that required to satisfy the 
spin-splitting condition, the material is insulating. In other words, by the time the field 
is high enough to satisfy gpBB > nkTthe sample has reverted to the insulating state and 
so no T113 region exists for this sample in the conducting state. We may note that the 
zero-field conductivity has a lower value at all temperatures than the extrapolated T1I3 
plot at 2.8 T which yields a negative value for a at zero T,  thus confirming the insulating 
character at zero field. 

Turning now to the intermediate conducting state, the magnetoresistance versus 
field at 0.58 K is shown in figure 2. A clear Shubnikov-de Haas peak is observed at 2.3 T. 
Taking& = 1.5 ho,yieldsn = 3.6 X loz m-;, tobecomparedwith3.3 X lo2’ m-;from 
low-temperature Hall measurements. The peak can therefore be identified with the 
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Figure 1. Conductivity versus TIp at fields of 2.8,3.2,3.4 and 3.6 T 
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Figure 2. Negative magnetoresistance ratio versus magnetic field at lemperaturesof4.2 and 
0.58 K showing Shubnikov-de Haas oscillations. 

n = 1Landaulevel. Obtainingzfrom theconductivityat2.3Twefindthatocz =0.12, 
again far removed from cucr %- 1. 

4. Discussion 

The cu,t % 1 criterion for the observation of the Shubnikov-de Haas effect is an obvious 
physical requirement and cannot be far wrong. To explain the very low values for these 
two samples (and others reported in the literature, e.g. in GaAs; Maliepaard er al1989) 
we must seek a reason for the large difference between the cyclotron and conductivity 
mean free times. 

ThemagneticlengthL, = (fL/Be)'/'at2.3 Tis 1.7 x 10-6m. Sample2isfairlyheavily 
compensated with K = N A / N D  = 0.7. With N D  - N A  = 3.3 X lo2' m-3, the average dis- 
tance between impurities is 1.7 x lo-* m. The magnetic length at the Shubnikov-de 
Haas extremum is thus comparable to the impurity spacing, so scattering by impurities 
is beginning to be frozen out by the magnetic field. This represents a qualitative change 
in the conductivity process. 

For normal scattering processes in a magnetic field some collision times will be long 
enough for complete orbits to occur while others will of course be much shorter. The 
essential feature is that the average of these, the mean free time z, is independent of 
magnetic field. In his original derivation of the magnetoconductivity equations, Peierls 
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(1931) gave qualitative arguments to show that T should be unaffected by the magnetic 
field. This was subsequently verified by Dingle (1952). What we are now suggesting is 
that, when themagneticlength LHbecomescomparablewith impurity spacing, the mean 
free time z becomes field dependent, so the situation is no longer adequately described 
by the magnetoconductivity equations. Indeed in the limit one has the situation that as 
r tends to infinity, the conductivity U tends to zero. (See for example, Pippard (1989): 
'in the absence ofcollisionsno steady motionof electronscan take place'). Theincreased 
number of electrons performing complete or nearly complete orbits then contribute to 
Shubnikov-de Haas but not to ordinary conductivity, and hence the discrepancy in the 
w z  > 1 criterion. 

Up to this point we have considered only elastic scattering by impurities since at low 
temperatures this is the main process for destroying electron momentum. However, if 
there are sufficient inelastic scattering events to disturb the cyclotron orbits no anomaly 
will be observed. Before the discrepancy in the w z  > 1 criterion can arise, the magnetic 
length must be less than both the elastic and inelastic lengths. 

We can calculate the inelastic length from L,  = (Dz,)@where D = 2EFro/3m* is the 
diffusion constant. equal in thiscase to2.2 x W4 m2s-'. zOis theelasticscattering time 
obtained Irom the conductivity. The inelastic scattering time, normally inaccessible 
from conductivity measurements, can be obtained via Kawabata (1980) low-field mag- 
netoresistance in the quantum interference regime. Finlayson and Mehaffey (1985) 
founds, = 5 x 10-'2T-1s.ThisyieldsL, = 1.6 X 10'8mat4,2K,sothemagneticlength 
L, is comparable to L, even at our high-temperature limit of 4 K, giving rise to a just 
visible oscillation in Ap/po. As the temperature is lowered the peak becomes clearly 
defined,asshowninfigure2for T =  0.58Kat whichtemperaturetheinelasticscattering 
length will be much greater than the magnetic length. 

One might suggest that if the samples are inhomogeneous then, in some regions, 
w z  > 1 can still be satisfied and a small kink appear. We may note, however, that a 
Shubnikov-de Haas blip has been observed, although not commented on, in several 
completely independent laboratonesindifferent systems including GaAs, all using high- 
quality MBE material. An inhomogeneity explanation thus seems highly improbable. 

Our conclusion is therefore that a scattering time z derived from conductivity ceases 
to be appropriate for insertionin therelation wcr > 1 when the magneticlength becomes 
comparable with the other scattering lengths. 
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